metabelian, supersoluble, monomial
Aliases: C62.101C23, Dic32:4C2, C23.13S32, C6.164(S3xD4), D6:Dic3:26C2, C62:5C4:4C2, C6.D4:5S3, (C22xC6).66D6, C6.62(C4oD12), (C3xDic3).19D4, (C2xDic3).82D6, (C22xS3).23D6, C6.49(D4:2S3), C3:2(C23.12D6), Dic3.7(C3:D4), C32:10(C4.4D4), (C2xC62).20C22, C3:7(C23.11D6), C2.14(D6.4D6), C2.23(D6.3D6), (C6xDic3).73C22, (C6xC3:D4).1C2, (C2xC3:D4).2S3, C2.37(S3xC3:D4), C6.60(C2xC3:D4), C22.132(C2xS32), (C3xC6).147(C2xD4), (S3xC2xC6).40C22, (C3xC6).77(C4oD4), (C2xC32:2Q8):13C2, (C3xC6.D4):13C2, (C2xC6).120(C22xS3), (C2xC3:Dic3).63C22, SmallGroup(288,607)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.101C23
G = < a,b,c,d,e | a6=b6=c2=e2=1, d2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ece=a3b3c, ede=b3d >
Subgroups: 602 in 169 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, Q8, C23, C23, C32, Dic3, Dic3, C12, D6, C2xC6, C2xC6, C42, C22:C4, C2xD4, C2xQ8, C3xS3, C3xC6, C3xC6, Dic6, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C4.4D4, C3xDic3, C3xDic3, C3:Dic3, S3xC6, C62, C62, C4xDic3, D6:C4, C6.D4, C6.D4, C3xC22:C4, C2xDic6, C2xC3:D4, C6xD4, C32:2Q8, C6xDic3, C3xC3:D4, C2xC3:Dic3, S3xC2xC6, C2xC62, C23.11D6, C23.12D6, Dic32, D6:Dic3, C3xC6.D4, C62:5C4, C2xC32:2Q8, C6xC3:D4, C62.101C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C4.4D4, S32, C4oD12, S3xD4, D4:2S3, C2xC3:D4, C2xS32, C23.11D6, C23.12D6, D6.3D6, D6.4D6, S3xC3:D4, C62.101C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 16 3 18 5 14)(2 17 4 13 6 15)(7 46 9 48 11 44)(8 47 10 43 12 45)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 39 35 37 33 41)(32 40 36 38 34 42)
(1 36)(2 31)(3 32)(4 33)(5 34)(6 35)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 21 4 24)(2 20 5 23)(3 19 6 22)(7 36 10 33)(8 35 11 32)(9 34 12 31)(13 29 16 26)(14 28 17 25)(15 27 18 30)(37 44 40 47)(38 43 41 46)(39 48 42 45)
(7 10)(8 11)(9 12)(19 28)(20 29)(21 30)(22 25)(23 26)(24 27)(31 40)(32 41)(33 42)(34 37)(35 38)(36 39)(43 46)(44 47)(45 48)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16,3,18,5,14)(2,17,4,13,6,15)(7,46,9,48,11,44)(8,47,10,43,12,45)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,39,35,37,33,41)(32,40,36,38,34,42), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,21,4,24)(2,20,5,23)(3,19,6,22)(7,36,10,33)(8,35,11,32)(9,34,12,31)(13,29,16,26)(14,28,17,25)(15,27,18,30)(37,44,40,47)(38,43,41,46)(39,48,42,45), (7,10)(8,11)(9,12)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27)(31,40)(32,41)(33,42)(34,37)(35,38)(36,39)(43,46)(44,47)(45,48)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16,3,18,5,14)(2,17,4,13,6,15)(7,46,9,48,11,44)(8,47,10,43,12,45)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,39,35,37,33,41)(32,40,36,38,34,42), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,21,4,24)(2,20,5,23)(3,19,6,22)(7,36,10,33)(8,35,11,32)(9,34,12,31)(13,29,16,26)(14,28,17,25)(15,27,18,30)(37,44,40,47)(38,43,41,46)(39,48,42,45), (7,10)(8,11)(9,12)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27)(31,40)(32,41)(33,42)(34,37)(35,38)(36,39)(43,46)(44,47)(45,48) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,16,3,18,5,14),(2,17,4,13,6,15),(7,46,9,48,11,44),(8,47,10,43,12,45),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,39,35,37,33,41),(32,40,36,38,34,42)], [(1,36),(2,31),(3,32),(4,33),(5,34),(6,35),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,21,4,24),(2,20,5,23),(3,19,6,22),(7,36,10,33),(8,35,11,32),(9,34,12,31),(13,29,16,26),(14,28,17,25),(15,27,18,30),(37,44,40,47),(38,43,41,46),(39,48,42,45)], [(7,10),(8,11),(9,12),(19,28),(20,29),(21,30),(22,25),(23,26),(24,27),(31,40),(32,41),(33,42),(34,37),(35,38),(36,39),(43,46),(44,47),(45,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 6G | ··· | 6Q | 6R | 6S | 12A | ··· | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 4 | 12 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 18 | 18 | 36 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D6 | C4oD4 | C3:D4 | C4oD12 | S32 | S3xD4 | D4:2S3 | C2xS32 | D6.3D6 | D6.4D6 | S3xC3:D4 |
kernel | C62.101C23 | Dic32 | D6:Dic3 | C3xC6.D4 | C62:5C4 | C2xC32:2Q8 | C6xC3:D4 | C6.D4 | C2xC3:D4 | C3xDic3 | C2xDic3 | C22xS3 | C22xC6 | C3xC6 | Dic3 | C6 | C23 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 3 | 1 | 2 | 2 | 2 |
Matrix representation of C62.101C23 ►in GL8(F13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,2,12,0,0,0,0,0,0,0,0,12,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,8,0,0,0,0,0,0,10,8,0,0,0,0,0,0,0,0,12,2,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,11,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C62.101C23 in GAP, Magma, Sage, TeX
C_6^2._{101}C_2^3
% in TeX
G:=Group("C6^2.101C2^3");
// GroupNames label
G:=SmallGroup(288,607);
// by ID
G=gap.SmallGroup(288,607);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,590,219,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=e^2=1,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,e*c*e=a^3*b^3*c,e*d*e=b^3*d>;
// generators/relations